
Da-TRASH: Depth-appended Tabletop Recycling
Algorithm for Segmenting Havoc

Ashwin Saxena
Computer Engineering
University of Michigan

Ann Arbor, USA
ashwinsa@umich.edu

Andrew Scheffer
Computer Science and Engineering

University of Michigan
Ann Arbor, USA

drewskis@umich.edu

Abstract—In this work, our team aims to reproduce and extend
upon the paper Learning RGB-D Feature Embeddings for Unseen
Object Instance Segmentation by Y. Xiang et. al [1]. This work
makes use of non-photorealistic, synthetic RGB + Depth data
to produce surprisingly accurate instance segmentation masks
of unknown objects. In this report, our team will validate the
specific result of the paper suggesting that combining RGB
and depth feature vectors elementwise is most effective for this
task. Additionally, our team will attempt to extend upon this
work by adapting the model to produce adequate results on
simple RGB images by first predicting the corresponding depth
image with another machine learning model. This extension
allows this instance segmentation model to be run on simpler
cameras, without depth-sensing capabilities. We show improved
segmentation accuracy of our new model, Da-TRASH, on trash
segmentation datasets as well as traditional tabletop datasets.

I. INTRODUCTION

This work presents a novel method for Unseen Object
Instance Segmentation (UOIS) for robotic applications [1].
Segmenting unseen objects in cluttered scenes is an important
perception task in robotics, especially in environments where
the types of objects are potentially unknown (i.e. kitchens,
machine shops, etc). Previous methods to solve this problem
have been limited due to an absence of large-scale datasets of
real images that contain objects in robotic manipulation scenes.
Moreover, using simulation to create RGB images does not
work well due to the sim-to-real domain gap.

This paper aims to utilize a dataset of completely synthetic
RGB-D images to directly learn feature embeddings for every
pixel in an image. These embeddings can then be produced
for realistic images and clustered to segment unseen objects.
To produce these feature embeddings for every pixel of an
input image, the authors use a fully convolutional network
with the goal of creating similar embeddings for pixels that
belong to the same object and differing embeddings (defined
by cosine distance) for pixels belonging to different objects.
The question of how to incorporate depth data into the main
convolutional network was also investigated, suggesting that
training two networks (one for depth and one for RGB) and
then adding the outputted feature maps elementwise was the
most effective.

The main conclusion of the method provided in [1] is that it
is possible to train feature embedding networks directly from

non-photorealistic, synthetic RGB-D datasets. Additionally,
the performance of this method is exceptional when optimized
to a new clustering loss function that rewards embeddings
that are similar when the pixels are a part of the same object
and incentivizes different objects to have drastically different
cluster centers in feature-space.

Our extension, Da-TRASH, extends upon this idea by not
relying on accurate depth data, but instead predicting the
metric depth data using a transformer-based encoder-decoder
model named ZoeDepth. This extension allows the instance
segmentation model to be run more accurately on cheaper
hardware, making it more accessible. Fig. I depicts an example
of the output of Da-TRASH method on a self-staged scene.
Later, we will show that this new model proves particularly
effective at segmenting cluttered waste scenes without depth
data.

Fig. 1. Instance segmentation of a self-staged scene of miscellaneous
recycling items using predicted depth.

II. RELATED WORK

The task of unseen object instance segmentation has been
an active area of research in the computer vision community
recently. The majority of methods for object instance seg-
mentation are based on deep learning techniques. A popular
learning-based approach is to generate a plethora of synthetic
data using object CAD models, then use this data as input
to train neural networks [2]; however, these approaches often
suffer with the ”sim-to-real gap” when the computer-generated



images are not realistic. This work shows that simulated, non-
photorealistic RGB and depth images can be sufficient for
UOIS.

Deep metric learning has also been a popular method for
generating generalized feature embeddings for many tasks.
For example the model, Facenet, by Schroff et. al generates
[3] face embeddings (produced by different networks) that
are compatible to each other and allow for direct comparison
between each other. This transition from RGB colorspace to
some arbitrary embedding space (with the mapping learned by
neural networks) allows for state-of-the-art facial clustering
and segmentation. The method presented for unseen object
instance segmentation expands upon these ideas to cluster
pixels that likely are from the same object.

III. METHOD

In essence, the main method of this paper can be broken
into two steps:

1) Extract feature embeddings for every pixel in the RGB
and Depth data

2) Group these feature embeddings into k object clusters
using mean-shift clustering

A high-level depiction of this process can be seen in Fig. 2.

Fig. 2. Simplified illustration of the method for learning RGB-D feature
embeddings using a fully convolutional network and a metric learning loss.

A. Feature Embeddings

The first step of this method is to back-project the depth data
into an organized point cloud using the camera intrinsics. Next,
as seen in Fig. 2, the input to the model is RGB and depth
data (of the same size) which are fed into a pretrained fully
convolutional network modeled after the 34 layer ResNet-8s
model [4]. As stated in [1], various backbone architectures can
be used such as the U-Net and VGG. The output matrix of
this model has the exact same width and height as the input
images but has depth C, where C is the length of the feature
embedding for each pixel. In this paper, C = 64.

The goal of training this model is to ensure pixels from the
same object are close together in embedding space whereas

pixels from different objects are far from each other in
embedding space. To ensure this, the authors apply a metric
learning loss function to a subset of each image’s pixels [1].

B. Combining RGB and Depth Data

One interesting aspect of this paper is how they investigated
combining the RGB data and depth data for generating pixel-
wise feature embeddings. This is an important step in the
model because the paper is attempting to show that the
combination of RGB and depth data improves results over
past research which only utilizes depth data. This result of the
paper is what our team will attempt to reproduce. To start, the
authors present three different ways of fusing RGB and Depth
(point cloud) data.

1) Early Fusion - the RGB image I and the point cloud
image P are concatenated before feeding them into the
network

2) Late Fusion Addition - I and P are fed into identi-
cally structured convolutional networks to compute two
feature maps, then the two feature maps are added
elementwise

3) Late Fusion Concatenation - similar to above, except
the two feature maps are concatenated

The authors performed experiments that suggested that the
Late Fusion Addition approach is most effective, and our main
goal will be to reproduce this result.

IV. VALIDATION EXPERIMENTS

In this section of the report, our team will outline the
experiments that we performed to validate the methodology
described in [1].

A. Overfitting the Model

First, our team overfit the RGB-Depth Add architecture on
a small subset of the dataset presented in [1]. Initially, we
intended to retrain the model from scratch on all 40,000 scenes
(with 7 images per scene); however, with our limited compute
resources we discovered that this goal was infeasible.

Instead, we have selected 14 scenes (for a total of 98 training
examples) to overfit the model on. To perform this experiment,
we ran the computation on Google Colab with 4 images per
batch (requiring about 8 GB of GPU RAM). We decided to run
64 epochs over the small training set to overfit the model. In
Fig. 3 the average overall loss per epoch is plotted along with
its two components: intra-cluster-loss and inter-cluster loss.

As seen in Fig. 3, the overall loss decreases steadily over
time, increasing our confidence that the model is learning
useful feature embeddings. Additionally, we can see the intra-
cluster-loss does not decrease initially like the inter-cluster-
loss, but decreases more steadily over a longer time period.
This indicates that when the model is first initialized with
random weights, it first prioritizes pushing cluster centers away
from each other in the embedding space. The total training
time was 1 hour.



Overlap Boundary
P R F1 P R F1 %

RGB 0.5739 0.7379 0.6354 0.3508 0.4972 0.3929 0.5220
Depth 0.8314 0.8658 0.8465 0.5619 0.5706 0.5611 0.8152

RGBD early 0.7935 0.8027 0.7944 0.5657 0.5912 0.5682 0.6879
RGBD add 0.8667 0.8745 0.8702 0.6679 0.7126 0.6821 0.8336

RGBD concat 0.8217 0.8549 0.8375 0.5670 0.6023 0.5764 0.6751

TABLE I: average recall, precision, and F1 score for overlap and boundary pixels in segmentation output of all OSD images

Fig. 3. Overfit model history for 64 epochs on a total of 14 scenes (98
images) from the training set.

B. Reproducing RGB + Depth Fusion Results

In this next section of the report, the methods and results
related to the fusion of RGB and Depth data in [1] will be
reproduced. The Object Segmentation Database (OSD) [5] will
be used to evaluate the performance of the three methods of
fusion discussed in the previous section. OSD contains 111
unique RGB-D images with up to 15 objects in any single
scene with varying levels of object occlusion. Following [1],
we will use precision and recall along with the corresponding
macro F1-Score across all classes in the case that there is class
imbalance in the segmentation task. These three metrics will
be calculated once for the overlap of all pixels in the ground
truth and predicted segmentation image, and once more for the
overlap of decision-boundary pixels in the ground truth and
predicted segmentation image. This is in an effort to obtain
insight into the effectiveness of the models at predicting object
boundaries.

Our team had particular issues with dealing with outdated
Python packages at this step of the testing process. It turns
out that the Point Cloud Library (PCL) wrapper used by the
original authors is no longer maintained, requiring our team to
fully understand the back projection of the depth maps into 3D
space using the camera intrinsics. Fig. 4 shows an intermediate
result of producing one of these depth point clouds with the
updated code.

Once depth point clouds were being efficiently created,
Table 1 was produced by evaluating the discussed metrics
on five different model architectures: an RGB-only model,
a Depth-only model, and the three proposed RGB+D fusion
models. For each model, we also included the average percent

Fig. 4. Projected point cloud data from OSD

of ground truth objects that had at least 75% overlap with
a unique prediction. As seen in Table 1, the RGBD-add
methodology outperforms all other proposed models. This not
only shows that adding RGB and Depth data elementwise after
being passed through their own networks is most effective but
also shows that useful RGB features can be created using non-
photorealistic synthetic data. This is shown in how the RGBD-
add model outperforms the simplistic Depth-only model. Once
this part of the method proposed in [1] was reproduced, we
started working on the extension of developing Da-TRASH.

V. ALGORITHMIC EXTENSION

A. The Problem

Segmenting and classifying cluttered and unseen objects is
problem relevant in several industries. Recycling and trash
sorting is one domain where this technology can be leveraged
to improve existing trash sorting algorithms. Only about 32.1
percent of recyclable waste is actually recycled [6]. At the
heart of the problem are the inefficiencies of the waste sorting
process (separating paper, plastic, metal, glass, etc.) due to
the extremely complex and cluttered nature of the waste
stream. Recyclable waste detection poses a unique computer
vision challenge as it requires detection of highly deform-
able and often translucent objects in cluttered scenes with
little to no context information usually present in human-
centric datasets. For our algorithmic extension, we decided to
tackle this challenge of segmenting waste by using the UOIS
method presented in the paper and combining it with zero-shot
depth estimation to make Da-TRASH, a waste segmentation
algorithm using only RGB images.



Fig. 5. Da-TRASH architecture. First, ZoeDepth is used to generate a depth map. An RGB image is fed into the MiDaS depth estimation framework. The
bottleneck and succeeding four hierarchy levels of the MiDaS decoder (at 1/32, 1/16, 1/8, 1/4 and 1/2 of the MiDaS in- and output resolution) are hooked
into the metric bins module. The metric bins module computes the per-pixel depth bin centers that are linearly combined to output the metric depth [7]. The
predicted metric depth image, along with the RGB image, then pass through the fully convolutional network to generate a feature map that can be used to
create segmentation labels.

B. Dataset

The dataset we used to test was the ZeroWaste dataset
which contains in-the-wild industrial-grade waste pictures on
a conveyor belt. ZeroWaste is the largest public dataset for
waste detection. The creators of the ZeroWaste dataset con-
cluded that current state-of-the-art detection and segmentation
methods cannot efficiently handle this complex in-the-wild
domain. In addition to the ZeroWaste dataset, we also used
some pictures of trash that we took to see how generalizable
our pipeline is.

Fig. 6. Example images from the ZeroWaste dataset

C. Depth Estimation

Since the ZeroWaste dataset contains no depth images, we
decided to use depth estimation algorithms to construct Da-
TRASH that would run using just RGB images. We decided
to use ZoeDepth (Zero-shot Transfer by Combining Relative
and Metric Depth) for depth estimation. ZoeDepth is a new
state-of-the-art depth estimation algorithm which needs no pre-
training to produce good results on unseen images. Before
ZoeDepth, existing work either focused on generalization per-
formance disregarding metric scale (relative depth estimation)
or state-of-the-art results on specific datasets (limited metric
depth estimation). ZoeDepth leverages an encoder-decoder
model to compute a metric depth map. ZoeDepth’s flagship

model, ZoeD-M12-NK, is pre-trained on 12 datasets using
relative depth and fine-tuned on two datasets using metric
depth. The model uses a lightweight head with a novel bin
adjustment design called the metric bins module for each
domain. During inference, each input image is automatically
routed to the appropriate head using a latent classifier. The
framework admits multiple configurations depending on the
datasets used for relative depth pre-training and metric fine-
tuning. Fig. 5 shows the architecture of the Da-TRASH
pipeline as it integrates ZoeDepth with UOIS.

VI. EXTENSION SETUP

Since we did not have access to GPUs on our local
machines, we had to use Google Colab for running all our
experiments. Google Colab does not exactly tell us what kind
of GPUs it uses, but we used widely available libraries, so
our experiments should be replicable by anyone with Google
Colab access. Most of the experiments do not take much time
besides the depth prediction step. Based on the size of the
image, generating the depth map can take anywhere between
30 seconds to 2 minutes to create. When doing it on a large
scale, this could be prohibitively slow.

VII. EXTENSION RESULTS AND DISCUSSION

A. OSD Dataset

When we first tried using ZoeDepth generated depth maps
with the RGB images, we did not get good results. This is
partly because of the unscaled values of the produced depth
maps. We were using UOIS pretrained models which assumed
that closer objects had lower values in the depth map and
distant objects had higher values in the depth map. However,
ZoeDepth generated depth maps that had inverse maps such
that closer objects had higher values. Once this was accounted
for, we began receiving promising segmentation results as seen
in Fig. 7.



Overlap Boundary
P R F1 P R F1 75%

RGB 0.5739 0.7379 0.6354 0.3508 0.4972 0.3929 0.5220
Predicted Depth 0.7087 0.7182 0.6916 0.4726 0.4194 0.4231 0.5485

Da-TRASH 0.7281 0.7208 0.7045 0.5235 0.4446 0.4592 0.5263

TABLE II: OCID recall precision, and F1 score for overlap and boundary pixels in segmentation output

Fig. 7. Segmentations Results of Da-TRASH on OSD Dataset

To evaluate the performance of our new pipeline (which uses
both RGB features and predicted-depth features) we compared
the segmentation results to segmentations generated based on
pure RGB images, and segmentations generated based on
only the predicted depth images from the ZoeDepth model.
These benchmarks can be seen in Table II. As seen, Da-
TRASH performs significantly better compared to the RGB-
only UOIS model in terms of precision and F1-score for
both overlap and boundary datasets. However, the recall was
slightly lower when compared to running the model on just
RGB data. One way of interpreting the slightly lower recall
but higher precision is that many of the predicted boxes are
more accurate, but slightly more of the ground truth objects
have been misclassified in our pipeline. The values for the 75%
metric are not statistically significant and more data is needed
to evaluate which model is most effective in this regard.

Overall, The precision and F1-score of the Da-TRASH
pipeline significantly improved upon the Only-RGB method.
Additionally, one can see by combining RGB feature embed-
dings with the predicted depth embeddings, the segmentation
F1-scores and precisions are improved in most cases.

When Da-TRASH is compared to the RGB-only pipeline,
it can be seen from Fig. 8, that for RGB-Only, the resulting
feature maps are much more blurry. Consequently, the RGB-
Only segmentation is much worse when compared to the seg-
mentation produced by Da-TRASH pipeline. This comparison
illustrates the efficacy of using Da-TRASH in instances when
depth images are unavailable.

B. ZeroWaste Results

We were able to get promising results by running Da-
TRASH pipeline on the ZeroWaste dataset, both in cases of
sparse and dense distributions of trash as shown in Fig. 9
and 10. We tried to generate useful metrics like precision

Fig. 8. Da-TRASH Segmentation compared to RGB-only segmentation

Fig. 9. Instance segmentation of a dense cluttered scene from ZeroWaste

and recall, however, due to the limitations of the ZeroWaste
dataset, we were unable to do so. The ZeroWaste dataset only
contains ground-truth information about material classification
and not ground-truth information about instance segmentation,
so any metrics calculated from those would have been inaccu-
rate. Nevertheless, the qualitative results we generated looked
encouraging.

C. Preprocessing Depth

Our team hypothesized that our prediction boundaries could
be made more accurate by discretizing the values of the
depth map outputted by ZoeDepth. In theory, this would
make clearer distinctions as to what objects were in the
foreground/background, hopefully allowing the algorithm to
more easily infer the boundaries of different objects. We
propose the use of a k-means clustering algorithm for this
task. The output of this algorithm is depicted in Fig. 11 where
the image to the right is the discretized image where k = 4.



Fig. 10. Instance segmentation of a sparse scene from ZeroWaste

Fig. 11. Depiction of the output of the k-means clustering on depth data

This discretized depth image can directly be backprojected
into x, y, z space using the camera intrinsics. This creates a
nice, discrete pointcloud that can be visualized in Fig. 12.

Fig. 12. Discrete point cloud partial visualization with k = 4 (only k=1 and
k=2 are shown.)

Unfortunately, through testing, we were not able to get
the discretized depth images to perform anywhere near at
the level of the standard predicted depth image. Given more
computational resources, a new model could be trained from
scratch using discretized depth which may yield better results.

VIII. CONCLUSION

Unseen Object Instance Segmentation is a huge problem in
the field of computer vision and robotics. Da-TRASH leverages
state-of-the-art depth estimation technologies to segment waste
images, a notoriously difficult task to accomplish due to
waste’s variable qualities like shape, opacity, and color. Da-
TRASH’s ability to be used with just RGB images, while
improving upon the results, makes Da-TRASH extremely
versatile and handy to use.

REFERENCES

[1] Y. Xiang, C. Xie, A. Mousavian, and D. Fox, “Learning rgb-d feature
embeddings for unseen object instance segmentation,” in Conference on
Robot Learning (CoRL), 2020.

[2] L. Shao, Y. Tian, and J. Bohg, “Clusternet: 3d instance
segmentation in rgb-d images,” Sep 2018. [Online]. Available:
https://arxiv.org/abs/1807.08894

[3] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” Jun 2015. [Online].
Available: https://arxiv.org/abs/1503.03832

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” Dec 2015. [Online]. Available:
https://arxiv.org/abs/1512.03385

[5] A. Richtsfeld, T. Mörwald, J. Prankl, M. Zillich, and M. Vincze, “Seg-
mentation of unknown objects in indoor environments,” 10 2012, pp.
4791–4796.

[6] Z. Z. J. A. F. A. P. H. V. A. B. C. S. A. B. Dina Bashkirova, Mohamed Ab-
delfattah and K. Saenko, “Zerowaste dataset: Towards deformable object
segmentation in cluttered scenes,” 2022.

[7] S. F. Bhat, R. Birkl, D. Wofk, P. Wonka, and M. Müller, “Zoedepth:
Zero-shot transfer by combining relative and metric depth,” 2023.
[Online]. Available: https://arxiv.org/abs/2302.12288


